Numerical Simulation of Failure Behavior of Granular Debris Flows Based on Flume Model Tests

نویسندگان

  • Jian Zhou
  • Ye-xun Li
  • Min-cai Jia
  • Cui-na Li
چکیده

In this study, the failure behaviors of debris flows were studied by flume model tests with artificial rainfall and numerical simulations (PFC(3D)). Model tests revealed that grain sizes distribution had profound effects on failure mode, and the failure in slope of medium sand started with cracks at crest and took the form of retrogressive toe sliding failure. With the increase of fine particles in soil, the failure mode of the slopes changed to fluidized flow. The discrete element method PFC(3D) can overcome the hypothesis of the traditional continuous medium mechanic and consider the simple characteristics of particle. Thus, a numerical simulations model considering liquid-solid coupled method has been developed to simulate the debris flow. Comparing the experimental results, the numerical simulation result indicated that the failure mode of the failure of medium sand slope was retrogressive toe sliding, and the failure of fine sand slope was fluidized sliding. The simulation result is consistent with the model test and theoretical analysis, and grain sizes distribution caused different failure behavior of granular debris flows. This research should be a guide to explore the theory of debris flow and to improve the prevention and reduction of debris flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental and numerical analysis of impact forces on structures due to a granular flow

The paper presents the results of an experimental and numerical analysis aimed to clarify some aspects regarding the impact of a granular flow on structures. The experimental set-up comprises a flume equipped with a system of differently sized model obstacles, which are placed along the run-out trajectory to measure the impact force. The soil used for the small-scale model is a mono-granular me...

متن کامل

Numerical Simulation of Granular Column Collapses with Pressure-Dependent Viscoplastic Model using the Smoothed Particle Hydrodynamic Method

This paper presents a numerical analysis of granular column collapse phenomenon using a two-dimensional smoothed particle hydrodynamics model and a local constitutive law proposed by Jop et al. This constitutive law, which is based on the viscoplastic behaviour of dense granular material flows, is characterized by an apparent viscosity depending both on the local strain rate and the local press...

متن کامل

Collapse of granular-liquid mixtures over rigid, inclined beds.

This work deals with the propagation of granular-liquid waves over rigid beds, originated by the sudden removal of a sluice gate in a rectangular, inclined flume. In particular, we experimentally investigate the role of the initial volume ratio of granular material-monodispersed plastic cylinders-to water, the flume width, and the bed roughness on the time evolution of the granular front. Due t...

متن کامل

Multilaminate Elastoplastic Model for Granular Media

A multilaminate based model capable of predicting the behavior of granular material on the basis of sliding mechanisms and elastic behavior of particles is presented. The capability of the model to predict the behavior of sand under arbitrary stress paths is examined. The influences of rotation of the direction of principal stress axes and induced anisotropy are included in a rational way witho...

متن کامل

Modelling debris flows down general channels

This paper is an extension of the single-phase cohesionless dry granular avalanche model over curved and twisted channels proposed by Pudasaini and Hutter (2003). It is a generalisation of the Savage and Hutter (1989, 1991) equations based on simple channel topography to a twophase fluid-solid mixture of debris material. Important terms emerging from the correct treatment of the kinematic and d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013